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A general scheme for studying g-deformed quasi-exactly solvable problems has been developed 
using the partial algebraization method. Exact solutions of the deformed non-polynomial interac-
tion generated by the potential V (r) = r2 + Ar2/( 1 + gr2) are obtained. 

1. Introduction 

Of late, q u an tu m deformat ion of Lie algebras, also 
called qu an tu m groups [1-6], has a t t racted much at-
tention. Apart f rom mathemat ica l curiosity, q u a n t u m 
groups play an impor tan t role in conformal field the-
ory [7], Yang Baxter equat ion [8], inverse scattering 
theory [9], geometric quant iza t ion [10], etc. However , 
applicat ion of q u a n t u m groups in q u a n t u m mechan-
ics bo th relativistic and non-relativistic, is a compara -
tively new subject. Biedenharn [11] and Macfar lane 
[12] have shown how to realize the SU ? (2) algebra 
using deformed ha rmonic oscillators. SU 9 (2) is also 
used to determine the effect of deformat ion on physi-
cal observations. Q u a n t u m deformat ion of wave 
equat ions is another line of investigation, whereby one 
can obta in the deformat ion effect in eigenvalues and 
other physical observables [13-18] . 

However , in almost all the cases the deformed wave 
equat ion was nonlinear, and only a first order (in 
terms of q) approximat ion can be obta ined in some 
cases. In this paper we show how exact solut ions of 
deformed wave equat ions can be obta ined in case of so 
called "quasi exactly solvable potent ia ls" [19-21] , 
where one can apply the partial a lgebraizat ion tech-
nique using finite dimensional representat ions of 
SU (2). We discuss the formalism up to j = 1 represen-
tat ion of SU (2). 7 = 1 is the most simple and elegant 
example of an exactly solvable deformed Schrödinger 
equat ion when the coupling pa ramete r s satisfy a cer-
tain constraint relation. Fo r a par t icular example we 
take the non-polynomial potent ial given by 

V(r) = r2 + - — ^ . 
1 + g r z 

Reprint requests to Prof. R. Roychoudhury; 
E-mail: raj(a isical.ernet.in. 

This potential has been studied by a number of au-
thors [22-24], The plan of the paper is as follows. 

In Sect. 2 we briefly discuss the essential features of 
the part ial algebraization technique. In this section 
the commuta t ion relations of SUq(2) generators are 
also given. In Sect. 3 we use a modified version of the 
partial algebraization method to find exact eigenval-
ues of the deformed non-polynomial potential when 
the coupling parameters / , g satisfy some constraint 
equations. Since for j = 0 and j = 1/2 no deformat ion 
occurs, we discuss in detail the case 7 = 1. Also the 
eigenvalues are obtained for small r ( lng) , where q is 
the deformat ion parameter , to show that when r 0 
we get back the non-deformed results obtained by 
previous authors using supersymmetry and other con-
siderations [25, 26]. 

2. Partial Algebraization Technique 

Given a Schrödinger equat ion 

Hij/(x) = EiJ/(x), (2.1) 

we perform an imaginary gauge t ransformat ion on the 
wave function ij/{x) [10]: 

i// (x) if/ (x) e - /(x) 

Then, 

1 d 2 

/ / = - - — y + F ( x ) , 
2 dx 

1 d 2 d 

where 

AV=V(x) + ^ A ' ( X ) - ^ A 2 ( X ) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
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while where T = In q, q being a real number. In the limit 
f (x) = J A (x') dx ' (2 6) T ~> 0 (or q 1) the deformat ion disappears. 

The gauge t ransformed eigenvalue equat ion reads 

Hg ij/(x) = E\J/ (X) . (2.7) 

Next we consider a finite dimensional representation 
of the SU (2) g roup characterised by finite spins. The 
generators of the g roup are 

3. The Non Polynomial Osci l lator 

Here we take 

T+-2i£ t * 6 = + + (3-1} 
1 - Z j i - $ — , 1 +grZ T2 

d We take the gauge funct ion to be 
T° = - j + Z-77, 

dc 2 g b 
T - d n , A ( r ) = - r + — * - j + - . (3.2) 
T =—. (2.8) 1 +grz r 

dc 
In general b = I + 1. However , for / = 0 we can take 

T , T , T satisfy the commuta t ion relations , , n , , . • . , , , 
' J both o = 0 and b = 1, the even parity and odd parity 

[T+, T~] = 2 T° , [ T * , T°] = T± . (2.9) solutions. It can easily be seen that the gauge trans-
formed Hami l ton ian is The basis of the corresponding finite dimensional rep-

r e s e n t a , 1 0 n i s = - - 2 W M A + AV. (3.3) 
R> = ( (2.10) d r d r 

where 
We choose the gauge in such a way that HG can be 

written as AV = V (r) — (A2 + A'). (3.4) 

Ho = a X Q Cab Ta T» + ^ I Q Ca T" + c o n s t a n t , (2.11) P u t t m g { ( t ) = r2? w e o b t a m 

where Cab and Ca are numerical coefficients. Using d 2 d f 8 g£ \ d 
(2.8), (2.11) can be written as H o = " •2 ^ + " J ^ ~ 4 b ) ^ 

1 d 2 d , A (4bg + 2g + /./g) 4gl 
Hg = - - P , ( f l ^ + P3 ( f l - + P2 ( f l , (2.12) + - + ( 2 6 + 1) ^ ^ ^ + — . (3.5) 

where P„(fl denotes at most a polynomial of degree n As we can see, HG can not be immediately written in 
in To bring (2.12) in a Schrödinger like form, we put the form (2.12). However, we can use the following 
say procedure. Define 

x = J d c P 4 - 1 / 2 ( c ) = F ( £ ) . (2.13) QG = (\+gO(HG-E). (3.6) 

T h e n Using (3.5) we obta in 
1 a* m n + p , d , p (214) ,2 

dc 
To get the deformed Hamil tonian one uses the + ( 4 - 4 ^ - 1 0 ^ ) ^ - ( 4 6 + 2)} — (3.7) 
generators Tq

± , Tq in place of T * , T , respectively, in y " df 
(2.11). T* , T^ are the generators of S U , (2) satisfying + {;/g + 2b + 5-E)gZ + (2b + \-E-4bg-2g). 
the commuta t ions relations 

sin h 2 T T° 
\T T~ 1 = — 
l q , q l s inhT ' QG — A T°2 + DT~ T° + F T~ T+ + G T + 

[T* ,T,°] = T* , (2.15) + HCT~ + I T° . (3.8) 

In terms of T± and T°, QG can be written as 
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Using (2.8), we get Substitution of (3.14) in (3.8) gives QG as 

d 2 

Qg = {(A-F)e+D£}--Y + {((1 - 2 j)A 
dc 

+ 2(j - 1)F + / ) £ - G £ 2 + Hc + D(i-j)} — 
dc 

+ + Aj2 + 2jF —jl). (3.9) 

Comparison of (3.9) and (3.7) gives 

D = - 4 , A — F = — 4g , G = - 4 # , 
D(i-j) + Hc = - 4 b - 2 , 
(l—2j)A + 2(j—\)F + I = 4 — 8g — 4bg — 2g, 
(2b + 1) — £ — 4bg — 2g = Aj2 + 2jF —jl, 

/ 

0 
+ 26 + 8; + 5 . (3.10) 

Now, to obtain the deformed Schrödinger equation 
corresponding to QG in (3.9) we keep the coefficients 
A, D, F etc. unchanged but replace T±, T° by Tq

+ and 
Tq° in (3.8). 

We consider the following cases: 

(i) 7 = 0 . 

Equation (3.10) gives 

X/g= - 4 b g - 2 g - 4 , (3.11) 

so that for 6 = 0, 

A/g = - 2 g - 4 , £ = —2g — I , (3.12) 

and for 6 = 1 

A/g=-6g-4, £ = - 6<? + 3 , (3.13) 

which agree with the known results. 
Also for j = 0, the deformation does not lead to any 

change. 

(ii) j = 1/2 . 

Here T ± , T ° are given by 

T+ = 
0 1 
0 0 

T~ = 
0 0 
1 0 

jO __ 1/2 0 
0 -1/2 

(3.14) 

It is found that in this case 

s i n h 2 x T° 
= 2 T°. 

sin h T 

Hence no deformation occurs and we can take 

T ± = T T̂ O T̂ C 
1 ~ 

ßr . — ßr . — 
A/4 + 1/2 

(3.15) 
D/2 + Hc A/4 + F-I/2 

The eigenvalue equation 

Hq <A = (3.15 a) 

implies det Qq
G = 0, which leads to 

(A/4 +1/2) (A/4 + F-1/2) - G (D/2 + Hc) = 0 , (3.16) 

which gives 

Ä/g= -(lg + 6bg + 6)±{(lg + 6bg + 6)2 

— (32 b2 g2 + 64 b g2 + 64 b g 
+ 24g2 + 96g + 32)}1/2 , (3.17) 

so that for 6 = 0 

A/g= -(lg + 6)±sj25g2-\2g + 4, 
E = k/g + 9 , (3.18) 

and for 6 = 1 

k/g =-(\lg + 6) + j49g2-4g + 4, 
E = k/g+ 11, 

which agrees with the results of [26]. 

(iü) j= 1. 

Here we take 

(3.19) 

z so 1 0-
T + =A 0 0 1 

\ 
Vo 0 0-

i 0 0' 
T~ 1 0 0 

Vo 1 o. 
0 

Y o = 0 0 
0 

Vo 0 J 
It is seen that 

s i n h 2 r 7"° 
sin h T 

= [2] T°, 

(3.20) 

(3.21) 

which allows us to take the following realization of 
T ± t-1 o. 

9 ' 1 ' 

j ± _ Y ± I ^ 
1/2 

T̂O _ y0 
1 (3.22) 
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Thus the deformed equat ion for Q G takes the form 

M, = AT°2 + V.DT- T° + OL2FT~ T + 

where 

a = 

+ a GT+ + y.HcT~ + I T° , 

[2JV/2 

2 

(3.23) 

(3.24) 

Thus 

d ^ 

+ {((1 — 2j) A + 2(j — \)a.2 F +1)£ — a G (3.25) 

+ a(D(\-j) + Hc)}-+Aj2 + 2joc2F-jI + 2joiG 
dC 

The corresponding deformed Hami l ton ian is 

d 2 

dr 

where 

+ W ' (3.26) 

K(r) = 
o V 

gf 
r z + 

b(b-l) kocr 
« ß 2 

2 t — +«ß 
+ 

r " x + g i f (a + Qir2 

+ — + -1 9f 

f i . A) 
u g) 

oc2gN 

91 , 1 

+ 
1 

a + g1r2 

ßg 

9i 

-2g-4bg-ß[-+b 

*9i 
, (3.27) 

where 

9i = \ Höf + (1 - a 2 ) (4 + 6g + 4 b g + A/2g)} (3.28) 

and 

ß = 2-5g-2bg + gi 

Since a -> 1 as g -> 1, 

Vq(r)^r2 + 2 
r 

1(1+ 1) A r 
+ 

1 

(3.29) 

= F( r ) (3.30) 

and 

E as q -> 1. 

/., g satisfy the constraint given by 

det (ß^j) = 0 , (3.31) 

Quantum Deformation of the Non-Polynomial Interaction 

where 

/ A + l [2 ] 1 / 2 G 0 \ 

Q"G = l[2Y/2(D + Hc) [2 ]F [2]1/2 G 1.(3.32) 

V 0 [2] 1 / 2 H c A-I + [2]F/ 

However, if we fix bo th /. and g, a simplification re-
sults: Take 

A + I = 0 , (3.33) 

then (3.3) reduces (for G # 0) to 

(D + HC)(A-I+[2]F) = 0 (3.34) 

or, 

- 12(1 + [2]) - 86(1 + [2]) + (32 - 12[2])bg (3.35) 

[21 kb 3 [21 k 
+ (30 — 18[2])g + Sb g — — ^ - = 0 . 

g 2 g 

Also (3.33) gives 

4 + 300+ - + 4b g = 0 . 

9 

From (3.35) and (3.36), we get 

(12 + 86) + [2] (6 + 46) 9 = 

(3.36) 

, (3.37) (30 + 326 + 86 2 ) + [2] {27 + 246 + 4 6 2 } 

[2] = s i n h 2 r / s i n h T (3.38) 

k/g=-{4 + (30 + 4b)g}, (3.39) 

and 

Eq= — (k/g + 2b+ 13). 
91 

(3.40) 

In part icular we consider the following cases: 

(i) 6 = 0. Keeping terms of 0 ( r 2 ) only, we get 

0 ~ _ ( 1 _ t 2 / 1 4 ) ) 

k 88 30 , 
- ~ 1 T2 , 
9 7 49 

30 

49 

(3.41) 

(3.42) 

(3.43) 

(ii) 6 = 1. Here also we keep terms of 0( t 2 ) . g and 
k/g are given by 

2 / 1 2 (3.44) 
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A 104 34 
— ~ — ' 1 r 
9 9 81 

31 59 , 
— + T2 . 

* 9 126 

(3.45) 

(3.46) 

1 

As T -> 0, the results agree completely with those ob-
tained in [26]. 

4. Conclusion and Discussion 

In this paper we have formulated a scheme by which 
the deformed wave equat ions and exact solut ions of 
quasi-exactly solvable potentials can be obta ined, us-
ing the finite dimensional representa t ion of SUq(2). 
F o r a par t icular case the non-po lynomia l potential 

A r2 

V(r) — rz-\ r- was studied. 
1+gr2 

It has been shown that for the j = 0 and j = 1 / 2 
representat ion of SU (2) no deformat ion occurs. How-
ever, for j = 1, deformat ion occurs and one gets exact 
solut ion if A and g satisfy certain q dependent con-
straint relations. The deformed potent ial tu rns out to 
be qualitatively different f rom the undeformed one, 
as the former has an addi t ional term of the form 

— . Though we confined ourselves up to j = 1 
(1 + g1 r2)2 

representations, the scheme would work for any j. 
Only in cases j > l a simple relation between T* and 
T± can not be obtained. Fo r example for j = 1 we 
can take the following representat ion of T * , . q 

2 '• rpO . 

10 

0 

0 

\ o 

>/[3] 
0 
0 
0 

0 

[2] 

0 

0 

0 

0 

>/[3] 
0 

yO 
4 

= (Tq
+) 

I 3/2 

0 

0 

\ o 

and 

0 

1/2 

0 

0 

0 

0 

1/2 
0 

o \ 

0 

0 

•3/2 I 

O n e can then obtaine the constra int relation using 
(3.31) and the corresponding energy f rom (3.10). 
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