Quantum Deformation of the Non-Polynomial Interaction
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A general scheme for studying g-deformed quasi-exactly solvable problems has been developed
using the partial algebraization method. Exact solutions of the deformed non-polynomial interac-
tion generated by the potential V (r) = r2 + Ar?/(1 + gr?) are obtained.

1. Introduction

Of late, quantum deformation of Lie algebras, also
called quantum groups [1-6], has attracted much at-
tention. Apart from mathematical curiosity, quantum
groups play an important role in conformal field the-
ory [7], Yang Baxter equation [8], inverse scattering
theory [9], geometric quantization [10], etc. However,
application of quantum groups in quantum mechan-
ics both relativistic and non-relativistic, is a compara-
tively new subject. Biedenharn [11] and Macfarlane
[12] have shown how to realize the SU,(2) algebra
using deformed harmonic oscillators. SU,(2) is also
used to determine the effect of deformation on physi-
cal observations. Quantum deformation of wave
equations is another line of investigation, whereby one
can obtain the deformation effect in eigenvalues and
other physical observables [13—18].

However, in almost all the cases the deformed wave
equation was nonlinear, and only a first order (in
terms of g) approximation can be obtained in some
cases. In this paper we show how exact solutions of
deformed wave equations can be obtained in case of so
called “quasi exactly solvable potentials” [19-21],
where one can apply the partial algebraization tech-
nique using finite dimensional representations of
SU (2). We discuss the formalism upto j = 1 represen-
tation of SU (2). j =1 is the most simple and elegant
example of an exactly solvable deformed Schrodinger
equation when the coupling parameters satisfy a cer-
tain constraint relation. For a particular example we
take the non-polynomial potential given by

Reprint requests to Prof. R. Roychoudhury;
E-mail: raj(a isical.ernet.in.

This potential has been studied by a number of au-
thors [22—24]. The plan of the paper is as follows.

In Sect. 2 we briefly discuss the essential features of
the partial algebraization technique. In this section
the commutation relations of SU,(2) generators are
also given. In Sect. 3 we use a modified version of the
partial algebraization method to find exact eigenval-
ues of the deformed non-polynomial potential when
the coupling parameters 4, g satisfy some constraint
equations. Since for j = 0 and j = 1/2 no deformation
occurs, we discuss in detail the case j = 1. Also the
eigenvalues are obtained for small 7 (In g), where g is
the deformation parameter, to show that when 7 — 0
we get back the non-deformed results obtained by
previous authors using supersymmetry and other con-
siderations [25, 26].

2. Partial Algebraization Technique

Given a Schrodinger equation

Hy (x)=Ey(x),

we perform an imaginary gauge transformation on the
wave function ¥ (x) [10]:

(2.1)

Y(x) > yY(x)e /9. (2.2)
Then,
1 d?
HZ—ET)CZ_+V(X), (23)
H; = L2 + A(x) d + AV 24
67 7 2 dx? S ’ 4)
where
1, 1 .5
AV=V(x)+EA (x)—EA (x) (2.5)
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while .
=[A(x)dx". (2.6)
The gauge transformed eigenvalue equation reads
Ho¥(x)=Ey(x). 2.7)

Next we consider a finite dimensional representation
of the SU (2) group characterised by finite spins. The
generators of the group are

dé
T® = . d
- dé ]
d
T = : 2.8
&z (2.8)
T*, T° T~ satisfy the commutation relations
[T, T 1=2T°, [T*T°=T* (2.9)

The basis of the corresponding finite dimensional rep-
resentation is

B =l G5 5aesa £

We choose the gauge in such a way that Hg; can be
written as

H,= Y C,T‘T"+ Y C,T°+ constant, (2.11)

a,bt0 a.bt0

(2.10)

where C,, and C, are numerical coefficients. Using
(2.8), (2.11) can be written as

2

d
+ P&

1
HG:_EP()dVZ 6

+ P&, (212)
where P, (¢) denotes at most a polynomial of degree n
in £. To bring (2.12) in a Schrodinger like form, we put

say

x=[d¢P7M*() =F(¢). (2.13)
Then
1 d? (1/4)P/+ P, d
HG=_§@+TCI +P. (214)

To get the deformed Hamiltonian H one uses the
generators T,*, T, in place of T*, T°, respectively, in
(2.11). T,*, T, are the generators of SU,(2) satisfying
the commutations relations

sinh2t T
sinht
['I;i s TqO] = T;i 5

T, 1] =

(2.15)
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where © =1n g, g being a real number. In the limit
7 — 0 (or ¢ — 1) the deformation disappears.

3. The Non Polynomial Oscillator

Here we take

ir? I1+1)
Vr)=r? . 31
s 1+4+gr? * 72 ]
We take the gauge function to be
A(r) PR . (32)
= —r —. 3
& 14+gr* 1

In general b =1+ 1. However, for [ =0 we can take
both b =0 and b = 1, the even parity and odd parity
solutions. It can easily be seen that the gauge trans-
formed Hamiltonian is

H. = s 2W()i+AV (3.3)
¢ dr? dr '
where
AV=V(r)—(42+ 4). (3.4)

Putting & (t) = r?, we obtain

d? d 8g¢ d
Bt —— = — §l = = |—
6T TR g T de <é 1+g¢ dz
i (4bg+2g+4/9) 49¢
+ = +QR2b+1)— . s (3.3
g 1+g¢ 1+g¢ s

As we can see, Hg can not be immediately written in
the form (2.12). However, we can use the following
procedure. Define

Qs=01+99Hs—-E). (3.6)
Using (3.5) we obtain
d2
Qs=—4(¢+9&) Rz
+{4gcfz+(4—4bg—10g)é—(4b+2)}dif (3.7

+(Ag+2b+5—E)gé+(Q2b+1—E—4bg—2g).
In terms of T* and T, Qg can be written as

Qo=AT” + DT " T°+FT T* +GT*
+HT-+IT°. (3.8)
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Using (2.8), we get

2

d
QG={(A_F)€2+DC}E?

+2(j—1)F+1)é—sz+HC+D(i——j)}dié

+{(1-2)4

+(2jGE+ Aj? + 2jF —jI). (3.9)

Comparison of (3.9) and (3.7) gives
D=—4, A—F=—4g’
D(i—j)+H.=—4b-2,
(1-2j)A+2(G—-1)F+I=4-8g—4bg—2g,
(2b+1)—E—4bg—2g=Aj*+2jF —jI,

G=-4g,

E=24+2b+8j+5. (3.10)
)

Now, to obtain the deformed Schrodinger equation

corresponding to Qg in (3.9) we keep the coefficients

A, D, F etc. unchanged but replace T*, T° by T," and

T, in (3.8).
We consider the following cases:
@ j=0.
Equation (3.10) gives
Alg= —4bg—2g—4, (3.11)
so that for b =0,
AMg=—-2g9g—4, E=-2g-1, (3.12)
and for b=1
ijg=—6g—4, E=—6g+3, (3.13)

which agree with the known results.
Also for j = 0, the deformation does not lead to any
change.

G j=1/2.
Here T*, T° are given by

L (01 _ (00\ _, (12 0
T _<0 0), T _<1 0), T _< 8 _1/2>. (3.14)

It is found that in this case

sinh2tT°

=2T°.
sinht

Hence no deformation occurs and we can take

'I;i=Tj:’ 'I;O=T°.

Substitution of (3.14) in (3.8) gives Qg as

A/A+1)2 G

P =06= <D/2+HC A/4+F—I/2>' )

The eigenvalue equation

H&Y =E ¥ (3.15a)
implies det Q% = 0, which leads to
(A/4+1/2)(A/4+F—1/2)—G(D/2+H)=0, (3.16)

which gives

ig=—(Tg+6bg+6)+{(Tg + 6bg + 6)*
—(32b%g> + 64bg* + 64bg

+249% + 969 + 32)}'/2, 3.17)
so that for b=0
ig=—(Tg+6)+./25g>* —12g+ 4,
E=//g+9, (3.18)
and for b =1
ijg=—(13g+6)+./49g> —4g + 4,
E=/i/g+11, (3.19)
which agrees with the results of [26].
(i) j=1.
Here we take
010
T+_ﬁ<0 0 1),
0 0O
0 0O
T—=\/§<1 0 0),
010
10 0
T = <0 0 0>, (3.20)
0 0 -1
It is seen that
sinh2tT°
e =T, (3.21)
sinht

which allows us to take the following realization of
T T

2 1/2
7’;1=Ti<u> , T;O=T0.

5 (3.22)
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Thus the deformed equation for Qg takes the form

QL=AT” +aDT T°+*FT T*

+aGT*+aH, T~ +IT°, (3.23)
where
12
1=<—[§]—) . (3.24)
Thus
., d?
Q“G={(A—oc2F)fz+och}d—€2
+{1-2))A4+2(—1)o>F+ ¢ —aGE? (3.25)

d
+oc(D(1—j)+Hc)}d—é-+-Aj2+2joz2F—jI+2jaGé.

The corresponding deformed Hamiltonian is

2

H,= —F-i—V;(r), (3.26)
where 22
g, bo—1) iarr \g TP
Vir)=—3 P 7 T ’ 2~ - 22
i r o+g,r (c+g,7%)

4og ofig 1 1
* [—F=—==] F —2g—4bg—p| - +b
<91 g%) a+g1r2{ I I B<2+ )

4 2 1 1 2
+r0° | ———)=2(*—1)4+6g+4bg)—12

91 9
2 2 2
.(1 _ ﬁ) _ “_<4g+ @) " (/3+ B_)} (3.27)
g1 9, 91 49,
where
1
6= {dg+(1 —a®)(4+6g+4dbg+7)2g)} (3.28)
and
B=2—-5g—2bg+g, (3.29)

Since « > 1 as g — 1,

I1+1) ir?
V,(r) > r? + = T =V(r) (3.30)
and
E,-E as g-1.

/, g satisfy the constraint given by

det(Q4) =0, (3.31)
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where
A+1 [21'*G 0
QL = <[2]”2(D-+-Hc) [2]F [21'*G > (3.32)
0 [21**H, A—I+[2]F

However, if we fix both 4 and g, a simplification re-
sults: Take

A4-f=0, (3.33)
then (3.3) reduces (for G # 0) to
(D+H)(A—I+[2]F)=0 (3.34)
or,
—12(1+ [2)—8b(1 + [2) + 32— 12[2) bg  (3.35)
+(G0—18[2)g +8b2g— D22 B2 g
g 2 g
Also (3.33) gives
4+30g+§+4bg=0. (3.36)
From (3.35) and (3.36), we get
~ (12 + 8b) + [2](6 + 4b) .
9= 30+ 326+ 867 + 21 (27 + 24b + 4b7) 27
[2] = sinh2¢/sinh (3.38)
g =—{4+(30+4b)g}, (3.39)
and
E,= 2—9 (/g +2b + 13). (3.40)
i |

In particular we consider the following cases:

(i)  b=0. Keeping terms of 0(z?) only, we get

2
g2 (1—7/14), (3.41)
. 88 30
;:—7+4—9—r2, (3.42)
330
Eq ~ 7 + E T (3.43)

(i) b =1. Here also we keep terms of 0(z2). g and
//g are given by

2f. 1 4
9=9 18° )

(3.44)
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7 104 34

e ahaes (3.45)
31 59

ot ot (3.46)

As 7 — 0, the results agree completely with those ob-
tained in [26].

4. Conclusion and Discussion

In this paper we have formulated a scheme by which
the deformed wave equations and exact solutions of
quasi-exactly solvable potentials can be obtained, us-
ing the finite dimensional representation of SU, (2).
For a particular case the non-polynomial potential

2
Vi=r*+ 1:_;2 was studied.
gr

It has been shown that for the j=0 and j=1/2
representation of SU (2) no deformation occurs. How-
ever, for j = 1, deformation occurs and one gets exact
solution if 4 and g satisfy certain q dependent con-
straint relations. The deformed potential turns out to
be qualitatively different from the undeformed one,
as the former has an additional term of the form
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